Abstract

The effects of temperature, stress level and hygrothermal aging on the creep-recovery behaviors of anisotropic conductive adhesive film (ACF) were investigated experimentally using a dynamic mechanical analyzer (DMA). It is found that the initial strains, instantaneous strains, and creep or recovery rates increase with increasing temperature,however decrease with increasing hygrothermal aging time. The change of creep or recovery rates at low temperature is apparent, however the creep or recovery rates increase obviously at temperatures above 25 oC with increasing stress level. For the hygrothermal aged ACF, the time to reach steady creep stage or steady recovery stage is reduced significantly compared with the unaged sample. The strain jumps at instantaneous loading decrease visibly and the strain jumps at instantaneous unloading decrease slightly with increasing aging time. And the strain jumps at instantaneous loading and unloading increase with increasing stress level for the unaged and aged ACFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call