Abstract

Epoxy-based anisotropic conductive adhesive film (ACF) joints have been used in a number of interconnect applications, including direct chip attachment, i.e., chip on glass, chip on ceramics, etc. The ACF joints can be subjected to high relative humidity environment and are susceptible to moisture sorption, especially at elevated temperatures. The long-term hygrothermal aging will induce irreversible changes to epoxy resin systems due to susceptibility of the polymer resin to hydrolysis, oxidation, etc. In this study, the hygrothermal environment was used as an accelerator for the degradation of ACF joints in chip-on-glass (COG) assemblies, which were fabricated in the form of single-lap joints. The effects of aging on the epoxy-based ACF joints were characterized by shear tests and scanning electron microscopy (SEM) at accelerated aging times of 125, 250, 375 and 550 h. The results show that the strength of ACF joints decreases and the fracture mechanism gradually changes with hygrothermal aging. In order to further interpret the hygrothermally-induced degradation to the ACF joints, an ACF joint aging model with hygrothermal environment has been developed, introducing a dimensionless parameter A, which was obtained from the interfacial fracture energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call