Abstract

The UV absorption spectrum of Cr(CO)(6) (chromium hexacarbonyl) in gas phase is investigated by theoretical methods with focus on the absorption intensities. It is shown that in spite of good predictions for the excitation energies, the most frequently employed methods for excited-state calculations produce poor predictions for oscillator strengths and absorption cross sections. In particular, time-dependent DFT predicts relative intensities for the two main spectral bands to be up to five times larger than the experimental results depending on the functional. The best results are obtained by a multireference configuration interaction method based on DFT (DFT/MRCI). Spectral shoulders caused by vibronic-coupling absorption are assigned based on symmetry-restricted spectrum simulations. The dynamics of Cr(CO)(6) photodissociation was also considered at TDDFT/B3LYP level. The estimated time constants for the Cr(CO)(6) relaxation and dissociation are in excellent agreement with experimental values. The time constant for internal conversion, however, is longer than the experimentally observed by factor 2, presumably due to an underestimation of the experimental analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.