Abstract

The urgent need for efficient and accurate automated screening tools for COVID-19 detection has led to research efforts exploring various approaches. In this study, we present pioneering research on COVID-19 detection using a hybrid model that combines convolutional neural networks (CNN) with a bi-directional long short-term memory (Bi-LSTM) network, in conjunction with fiber optic data for SARS-CoV-2 Immunoglobulin G (IgG) antibodies. Our research introduces a comprehensive data preprocessing pipeline and evaluates the performance of four different deep learning (DL) algorithms: CNN, CNN-RNN, BiLSTM, and CNN-BiLSTM, in classifying samples as positive or negative for the COVID-19 virus. Among these, the CNN-BiLSTM classifier demonstrated superior performance on the training datasets, achieving an accuracy of 89 %, a recall of 88 %, a precision of 90 %, an F1-score of 89 %, a specificity of 90 %, a geometric mean (G-mean) of 89 %, and a receiver operating characteristic (ROC) of 96 %. In addition, the achieved classification results were compared with those reported in the literature. The findings indicate that the proposed model has promising potential for classifying COVID-19 and could serve as a valuable tool for healthcare professionals. The use of IgG antibodies to detect the virus enhances the specificity and accuracy of the diagnostic tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.