Abstract
Deep learning models have recently been proven to be successful in various natural language processing tasks, including sentiment analysis. Conventionally, a deep learning model’s architecture includes a feature extraction layer followed by a fully connected layer used to train the model parameters and classification task. In this paper, we employ a deep learning model with modified architecture that combines Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, with Support Vector Machine (SVM) for Arabic sentiment classification. In particular, we use a linear SVM classifier that utilizes the embedded vectors obtained from CNN and Bi-LSTM for polarity classification of Arabic reviews. The proposed method was tested on three publicly available datasets. The results show that the method achieved superior performance than the two baseline algorithms of CNN and SVM in all datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Computer Science and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.