Abstract

A metal grating on top of a light-emitting diode (LED) with a designed grating period for compensating the momentum mismatch can enhance the surface plasmon polariton (SPP) coupling effect with the quantum wells (QWs) to improve LED performance. Here, we demonstrate the experimental results showing that the induced localized surface plasmon (LSP) resonance on such a metal grating can dominate the QW coupling effect for improving LED performance, particularly when grating ridge height is large. The finding is illustrated by fabricating Ag gratings on single-QW, green-emitting LEDs of different p-type thicknesses with varied grating ridge height and width such that the distance between the grating ridge tip and the QW can be controlled. Reflection spectra of the Ag grating structures are measured and simulated to identify the SPP or LSP resonance behaviors at the QW emission wavelength. The measured results of LED performances show that in the LED samples under study, both SPP and LSP couplings can lead to significant enhancements of internal quantum efficiency and electroluminescence intensity. At the designated QW emission wavelength, with a grating period theoretically designed for momentum matching, the LSP coupling effect is stronger, when compared with SPP coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.