Abstract

The enhanced surface plasmon (SP) coupling effects in a blue light-emitting diode (LED) with regularly patterned (REG) surface Ag nanoparticles (NPs) on a dielectric interlayer (DI) of a lower refractive index overgrown on p-GaN are demonstrated. Without a DI, the surface Ag NPs-induced SP coupling with the quantum wells (QWs) in the LED can lead to the increases of internal quantum efficiency and LED output intensity, the reduction of the external quantum efficiency droop effect, and the enhancement of modulation response. By adding a DI, the SP coupling effect is enhanced, resulting in the further improvements of all the aforementioned factors. We compare the SP coupling effects in the LEDs with REG Ag NPs on DIs to those of randomly distributed (RAN) Ag NPs previously reported. Although the variation trends of the localized surface plasmon (LSP) resonance peaks and hence the SP coupling behaviors of REG and RAN Ag NPs are similar, their LSP resonance strengths at the QW emission wavelength are different due to their different spectral patterns of LSP resonance. In other words, although the REG Ag NPs can produce stronger collective LSP resonance with a narrower spectral width, the SP coupling effect depends mainly on the LSP resonance strength at the QW emission wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call