Abstract
Tkachenko showed in 1990 the existence of a countably compact group topology on the free Abelian group of size c using CH. Koszmider, Tomita and Watson showed in 2000 the existence of a countably compact group topology on the free Abelian group of size 2 c using a forcing model in which CH holds. Wallace's question from 1955, asks whether every both-sided cancellative countably compact semigroup is a topological group. A counterexample to Wallace's question has been called a Wallace semigroup. In 1996, Robbie and Svetlichny constructed a Wallace semigroup under CH. In the same year, Tomita constructed a Wallace semigroup from MA countable . In this note, we show that the examples of Tkachenko, Robbie and Svetlichny, and Koszmider, Tomita and Watson can be obtained using a family of selective ultrafilters. As a corollary, the constructions presented here are compatible with the total failure of Martin's Axiom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.