Abstract
We introduce a functor of functionals that preserve the maximum of comonotone functions and the addition of constants. This functor is a subfunctor of the functor of order-preserving functionals and includes the idempotent measure functor as a subfunctor. The main aim of this paper is to demonstrate that this functor is isomorphic to the capacity functor. We establish this isomorphism using the fuzzy max-plus integral. In essence, this result can be viewed as an idempotent analogue of the Riesz Theorem, which establishes a correspondence between the set of σ-additive regular Borel measures and the set of positive linear functionals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.