Abstract
We study atomic-like properties of artificial atoms by measuring Coulomb oscillations in vertical quantum dots containing a tunable number of electrons starting from zero. At zero magnetic field the energy needed to add electrons to a dot reveals a shell structure for a two-dimensional harmonic potential. As a function of magnetic field the current peaks shift in pairs, due to the filling of electrons into spin-degenerate single-particle states. When the magnetic field is sufficiently small, however, the pairing is modified, as predicted by Hund's rule, to favour the filling of parallel spins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have