Abstract

The effects of direct Coulomb and exchange interactions on spin states are studied for quantum dots contained in circular and rectangular mesas. For a circular mesa a spin-triplet favored by these interactions is observed at zero and nonzero magnetic fields. We tune and measure the relative strengths of these interactions as a function of the number of confined electrons. We find that electrons tend to have parallel spins when they occupy nearly degenerate single-particle states. We use a magnetic field to adjust the single-particle state degeneracy, and find that the spin-configurations in an arbitrary magnetic field are well explained in terms of two-electron singlet and triplet states. For a rectangular mesa we observe no signatures of the spin-triplet at zero magnetic field. Due to the anisotropy in the lateral confinement single-particle state degeneracy present in the circular mesa is lifted, and Coulomb interactions become weak. We evaluate the degree of the anisotropy by measuring the magnetic field dependence of the energy spectrum for the ground and excited states, and find that at zero magnetic field the spin-singlet is more significantly favored by the lifting of level degeneracy than by the reduction in the Coulomb interaction. We also find that the spin-triplet is recovered by adjusting the level degeneracy with magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.