Abstract

The proton-capture reaction Si26(p,γ)P27 was studied via Coulomb dissociation (CD) of P27 at an incident energy of about 500 MeV/u. The three lowest-lying resonances in P27 have been populated and their resonance strengths have been measured. In addition, a nonresonant direct-capture component was clearly identified and its astrophysical S factor measured. The experimental results are compared to Monte Carlo simulations of the CD process using a semiclassical model. Our thermonuclear reaction rates show good agreement with the rates from a recent compilation. With respect to the nuclear structure of P27 we have found evidence for a negative-parity intruder state at 2.88-MeV excitation energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call