Abstract
We present Coulomb Blockade measurements of two few-electron quantum dots in series which are configured such that the electrochemical potential of one of the two dots is aligned with spin-selective leads. The charge transfer through the system requires co-tunneling through the second dot which is $not$ in resonance with the leads. The observed amplitude modulation of the resulting current is found to reflect spin blockade events occurring through either of the two dots. We also confirm that charge redistribution events occurring in the off-resonance dot are detected indirectly via changes in the electrochemical potential of the aligned dot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.