Abstract

Abstract A method for simulating fluid motions that shows promise for application to the oceans is explored. Incompressible inviscid fluids with free surfaces are represented as piles of slippery sacks. A system of ordinary differential equations governs the motions of the sacks, and this system is solved numerically in order to simulate a nonlinear deformation, internal and external gravity waves, and Rossby waves. The simulations are compared to analytic and finite-difference solutions, and the former converge to the latter as the sizes of the sacks are decreased. The slippery-sack method appears to be well suited to ocean modeling for the following reasons: 1) it perfectly conserves a fluid's distributions of density and tracers; 2) unlike existing isopycnic models the slippery-sack method is capable of representing a continuum of fluid densities and vertically resolving neutral regions; 3) the inclusion of continuous topography adds no numerical complexity to the slippery-sack method; 4) the slippery-...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.