Abstract

Abstract China's power sector has become the largest contributor to China's carbon emissions because of its coal-dominated power structure. Replacing fossil fuels with renewable energy is an effective way to reduce carbon emissions and, therefore, a series of targets for renewable electricity generation have been put forward in national plans. However, how these targets will be reached is unclear. This paper uses a Long-range Energy Alternative Planning system (LEAP) model to explore the optimum development path of China's power sector from 2015 to 2050, taking into consideration the impacts of the renewable energy targets. Three scenarios are designed to examine the costs and benefits of developing renewable energy and improving the technologies for renewable power generation, comprising a base scenario, a renewable energy policy scenario and a technological progress scenario. The results show that the power generation cost would increase by at least 2.31 trillion RMB and that CO2 emissions would be reduced by 35.8 billion tonnes during 2015–2050 if power generation follows current planning. Furthermore, every 1% increase in the capacity factors of renewable electricity would on average result in the cumulative CO2 emissions decreased by 979 million tonnes and average CO2 abatement cost decreased by 5.56 RMB/tCO2 during 2015–2050. Based on this study, several policy implications are proposed for the development of power sector in China. Firstly, government may reconsider the current planning for gas-fired power and nuclear power to reach low-carbon electricity generation. Secondly, adjusting the carbon price can offset the additional cost of renewable electricity generation. Thirdly, promoting advanced technologies to match renewable electricity generation can obtain greater economic and environmental benefits. Finally, from the perspective of development potential, reducing the costs of solar power would be the emphasis at this stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.