Abstract

We introduce a simple model of diffusive jump process where a fee is charged for each jump. The nonlinear cost function is such that slow jumps incur a flat fee, while for fast jumps the cost is proportional to the velocity of the jump. The model-inspired by the way taxi meters work-exhibits a very rich behavior. The cost for trajectories of equal length and equal duration exhibits giant fluctuations at a critical value of the scaled distance traveled. Furthermore, the full distribution of the cost until the target is reached exhibits an interesting "freezing" transition in the large-deviation regime. All the analytical results are corroborated by numerical simulations. Our results also apply to elastic systems near the depinning transition, when driven by a random force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.