Abstract

Hybrid Renewable Energy Systems have been considered as a suitable way to supply electricity. The hybrid energy (Solar-Wind-Storage-hydrogen-diesel) is increasingly used in various applications, especially at isolated sites. This study proposes the optimization and analysis of a stand-alone photovoltaic/battery/fuel cell/electrolyzer/hydrogen hybrid system (HS) to find out the optimal sizes and costs. In the first step, SAM software was used to estimate the global solar irradiance (GHI) for the studied area and to select the best PV, battery and fuel cell components. MATLAB software was handled to predict the power output of the renewable source (PV system) using an Artificial Neural Network (ANN) model. Then, simulation, optimization and techno-economic analysis were carried out in the second step with HomerPro software. Four proposed configurations are optimized in this work and different comparisons have been made regarding the found results. The results of the cost optimization were found to be 50861.21 $ and 0.95657 $ for NCP and COE, respectively. Moreover, the same HS configurations are simulated and optimized under Moroccan climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call