Abstract

Disruption of parvalbumin positive (PVALB+) cortical interneurons is implicated in the pathogenesis of schizophrenia. However, how these defects emerge during brain development remains poorly understood. The protracted maturation of these cells during postnatal life has made their derivation from human pluripotent stem cells (hPSCs) extremely difficult, precluding hPSC-based disease modeling of their role in neuropsychiatric disease. Here we present a cortical assembloid system that supports the development of PVALB+ cortical interneurons which match the molecular profiles of primary PVALB+ interneurons and display their distinctive electrophysiological features. Further, we characterized cortical interneuron development in a series of CRISPR-generated isogenic structural variants associated with schizophrenia and identified variant-specific phenotypes affecting cortical interneuron migration and the molecular profile of PVALB+ cortical interneurons. These findings offer plausible mechanisms on how the disruption of cortical interneuron development may impact schizophrenia risk and provide the first human experimental platform to study of PVALB+ cortical interneurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.