Abstract

Corrosion of copper in aerated acidic chloride pickling (0.5 M HCl) solutions and its inhibition by 3-amino-1,2,4-triazole-5-thiol (ATT) have been investigated using electrochemical techniques and weight-loss measurements, along with Raman spectroscopy. Electrochemical measurements for copper after varied immersion periods of 0, 24, and 48 h showed that the presence of ATT and the increase of its concentration significantly decrease cathodic, anodic, corrosion ( j Corr ) currents and corrosion rates ( K Corr ), as well as the dissolution currents at 300 mV vs Ag/AgCl, while increasing polarization resistance ( R p ), degree of surface coverage ( θ) and inhibition efficiency (IE%) to a great extent. Weight-loss measurements after different immersion periods of 6 to 48 h revealed that the dissolution of copper decreased to a minimum and the corresponding IE% increased with increasing ATT concentration. The detection of ATT molecules on the copper surface by Raman spectroscopy indicated that inhibition of copper corrosion is achieved by strong adsorption of ATT molecules onto the copper surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.