Abstract
Corrosion of copper in aerated synthetic sea water (3.5% NaCl) solutions and its inhibition by 3-amino-1,2,4-triazole (ATA) have been studied using electrochemical, gravimetric, and pH measurements, along with Raman spectroscopy. Electrochemical measurements indicated that the presence of ATA and the increase of its concentration suppress the corrosion process on the copper surface. This effect decreases cathodic, anodic, and corrosion ( j corr ) currents and corrosion rates ( K corr ), while increasing polarization resistance ( R p ), surface coverage ( θ), and inhibition efficiency (IE%). Weight loss measurements indicated that the dissolution of copper and the accompanying change of pH decreased to a minimum even after 24 days immersion due to the presence of ATA and the increase of its concentration. Raman investigations revealed that the inhibition of copper corrosion is achieved by strong adsorption of ATA molecules onto the copper surface, preventing it from being corroded easily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.