Abstract

The recent observation that the Cosmic Microwave Background (CMB) may prefer a neutrino excess has triggered a number of works studying this possibility. The effect obtained by the non-interacting massless neutrino excess could be mimicked by some extra radiation component in the early universe, such as a cosmological gravitational wave background. Prompted by the fact that a possible candidate to source those gravitational waves would be cosmic strings, we perform a parameter fitting study with models which considers both cosmic strings and the effective number of neutrinos as free parameters, using CMB and non-CMB data. We find that there is a correlation between cosmic strings and the number of extra relativistic species, and that strings can account for all the extra radiation necessary. In fact, CMB data prefer strings at a 2sigma level, paying the price of a higher extra radiation component. CMB data also give a moderate preference for a model with ns=1. The inclusion of non-CMB data lowers both the preference for strings and for the extra relativistic species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.