Abstract
We present a significant update of the constraints on the Abelian Higgs cosmic string tension by cosmic microwave background (CMB) data, enabled both by the use of new high-resolution CMB data from suborbital experiments as well as the latest results of the WMAP satellite, and byimproved predictions for the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new cosmic string spectra [1] were improved especially for small angular scales, through the use of larger Abelian Higgs string simulations and careful extrapolation.If Abelian Higgs strings are present then we find improved bounds on their contribution to the CMB anisotropies, .ͩAH < 0.095, and on their tension, GμAH < 0.57 × 10−6, both at 95% confidence level using WMAP7 data; and .ͩAH < 0.048 and GμAH < 0.42 × 10−6 using all the CMB data. We also find that using all the CMB data, a scale invariant initial perturbation spectrum, ns = 1, is now disfavoured at 2.4σ even if strings are present. A Bayesian model selection analysis no longer indicates a preference for strings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.