Abstract
Cosmic microwave background (CMB) anisotropy (spatial inhomogeneity) data provide the tightest constraints on the Hubble constant, matter density, spatial curvature, and dark energy dynamics. Other data, sensitive to the evolution of only the spatially homogeneous part of the cosmological model, such as Type Ia supernova apparent magnitude, baryon acoustic oscillation distance, and Hubble parameter measurements, can be used in conjunction with the CMB data to more tightly constrain parameters. Recent joint analyses of CMB and such non-CMB data indicate that slightly closed spatial hypersurfaces are favored in nonflat untilted inflation models and that dark energy dynamics cannot be ruled out, and favor a smaller Hubble constant. We show that the constraints that follow from these non-CMB data alone are consistent with those that follow from the CMB data alone and so also consistent with, but weaker than, those that follow from the joint analyses of the CMB and non-CMB data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.