Abstract
Cardiovascular diseases have been the leading cause of death worldwide for many years. In recent years, new cardiovascular disease markers have been sought that can improve the diagnosis and treatment of this broad and prognostically unfavorable group of diseases. The efforts of many researchers are aimed at detecting changes in the level of enzymes in the lipid peroxidation system, which are antioxidants, as possible mechanisms underlying the development of cardiovascular disease. The imbalance between the intensification of free-radical oxidation caused by active oxygen forms and the activity of the body’s protective antioxidant system leads to serious disturbances: disorganization of cellular structures, changes in their functional activity. The article presents the study of the interrelation of the concentration distribution of enzymes of the lipid peroxidation system – antioxidants in blood serum and heart tissues of white non-pedigree rats. The correlation coefficients of Spearman, the gamma of correlation and Kendel Tau revealed a reliable presence of weak correlation between the concentration of glutathione peroxidase in blood serum and heart tissues (Spearman R = 0.18 at p ≤ 0.029408, Gamma = 0.14 at p ≤ 0.018701; Kendall Tau = 0.13 at p ≤ 0.018701).
Highlights
The highest prevalence of cardiovascular diseases is the cause of increased mortality and disability in the working population in economically developed countries
The search for the root causes of etymology of various diseases leads to the concept of oxidative stress, which develops against the background of disturbance of homeostatic balance of the body under the influence of endo- and exogenous factors
Intensification of oxidation-reduction processes enhances the formation of active oxygen species such as peroxynitrite, superoxide anion and others, which accumulating in large quantities disturb the process of synthesis of collagen and proteoglycans, connective tissue, cause microcirculatory disorders and provoke vascular endothelial dysfunction, depriving it of the ability to adapt to changes in hemodynamics, increasing vasoconstriction, which in turn leads to the development of a number of diseases: atherosclerosis, ischemic heart disease, arterial hypertension, diabetes mellitus [1]
Summary
The highest prevalence of cardiovascular diseases is the cause of increased mortality and disability in the working population in economically developed countries. The search for the root causes of etymology of various diseases leads to the concept of oxidative stress, which develops against the background of disturbance of homeostatic balance of the body under the influence of endo- and exogenous factors. Intensification of oxidation-reduction processes enhances the formation of active oxygen species such as peroxynitrite, superoxide anion and others, which accumulating in large quantities disturb the process of synthesis of collagen and proteoglycans, connective tissue, cause microcirculatory disorders and provoke vascular endothelial dysfunction, depriving it of the ability to adapt to changes in hemodynamics, increasing vasoconstriction, which in turn leads to the development of a number of diseases: atherosclerosis, ischemic heart disease, arterial hypertension, diabetes mellitus [1]. Free radicals cause damage to cardiomyocytes, disrupt the structural modification of the lipid layer with subsequent remodeling of myocardium, thereby impairing its contractile functions, providing a direct negative inotropic effect [3,4,5,6,7,8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.