Abstract

Correlation of microstructure with mechanical properties and fracture toughness of three cast A356 aluminum alloys fabricated by low-pressure-casting, rheo-casting, and casting–forging was investigated in this study. Microfracture observation results showed that eutectic Si particles were cracked first, but that the aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the cast-forged alloy were superior to those of the low-pressure-cast or rheo-cast alloy. These results were interpreted by a simple fracture initiation model based on the basic assumption that crack extension initiated at a certain critical strain developed over some microstructurally significant distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.