Abstract

The present study aims at investigating the effects of microstructure on fracture toughness of two A356 Al alloys. These A356 alloys were fabricated by casting processes such as rheo-casting and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanisms. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by the casting-forging process. Microfracture observation results revealed that eutectic Si particles segregated along cells were cracked first, but that Al matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.