Abstract

Si-doped GaN layers grown by metal organic vapor phase epitaxy on m-plane GaN substrates were investigated by low-temperature cathodoluminescence (CL). We have observed stacking fault (SF) related emission in the range of 3.29–3.42 eV for samples with moderate doping, while for the layers with high concentration of dopants, no CL lines related to SFs have been noted. Perturbation of the SF potential profile by neighboring impurity atoms can explain localization of excitons at SFs, while this effect would vanish at high doping levels due to screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.