Abstract

The influence of the miscut angle of GaN substrate on compositional and optical properties of InxGa1−xN epilayers (0.05<x<0.1) was examined using x-ray diffraction, photoluminescence (PL), cathodoluminescence, and Z-contrast scanning electron microscopy. We show that single atomic steps bunch during growth of InGaN and form macrosteps. Indium is incorporated differently at treads and risers of these macrosteps, which causes the layer to decompose and induces the formation of compositional growth striations. Since the growth step density increases with growing miscut angle of the substrate, the average indium concentration decreases and the average PL peak energy blueshifts and broadens with increasing miscut angle. The presented work enables understanding on microscopic scale effects related to the inhomogeneous distribution of indium in InGaN layers on miscut substrates, which is significant from the point of view of optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call