Abstract

We examined solution-processed alkaline-earth-metal doped gallium indium oxide (GIO) thin film transistors (TFT) and studied the relationship between the dopant species and the threshold voltage (Vth) stability. As the atomic number of the dopant increases, the amount of oxygen vacancies, which act as the major defect sites, decreased and the Vth stability is enhanced. The electron trapping times and total defect sites were quantitatively calculated. Particularly, Sr-doped GIO TFT show the highest Vth stability under positive gate bias and the origin of Vth stability enhancement is deduced by using the partial charge model and reaction kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.