Abstract

The Mark–Houwink–Sakurada (MHS) equation allows for estimation of rheological properties, if the molecular weight is known along with good understanding of the polymer conformation. The intrinsic viscosity of a polymer solution is related to the polymer molecular weight according to the MHS equation, where the value of the constants is related to the specific solvent and its concentration. However, MHS constants do not account for other characteristics of the polymeric solutions, i.e., Deacetilation Degree (DD) when the solute is chitosan. In this paper, the degradation of chitosan in different acidic environments by thermal treatment is addressed. In particular, two different solutions are investigated (used as solvent acetic or hydrochloric acid) with different concentrations used for the preparation of chitosan solutions. The samples were treated at different temperatures (4, 30, and 80 °C) and time points (3, 6 and 24 h). Rheological, Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analyses (TGA) were performed in order to assess the degradation rate of the polymer backbones. Measured values of molecular weight have been integrated in the simulation of the batch degradation of chitosan solutions for evaluating MHS coefficients to be compared with their corresponding experimental values. Evaluating the relationship between the different parameters used in the preparation of chitosan solutions (e.g., temperature, time, acid type and concentration), and their contribution to the degradation of chitosan backbone, it is important to have a mathematical frame that could account for phenomena involved in polymer degradation that go beyond the solvent-solute combination. Therefore, the goal of the present work is to propose an integration of MHS coefficients for chitosan solutions that contemplate a deacetylation degree for chitosan systems or a more general substitution degree for polymers in which viscosity depends not only on molecular weight and solvent combinations.

Highlights

  • The viscosity study of polymers has been of continuing interest, mainly due to its fast measurement and importance in the characterization of the intermolecular interaction, as it describes the measure of the resistance to flow of a material, mixture, or solution

  • Evaluating the relationship between the different parameters used in the preparation of chitosan solutions, and their contribution to the degradation of chitosan backbone, it is important to have a mathematical frame that could account for phenomena involved in polymer degradation that go beyond the solvent-solute combination

  • Several studies in the literature already indicate that these conditions promote polymer degradation; only limited information is available on the effect of the above-mentioned conditions on the subsequent final material properties

Read more

Summary

Introduction

The viscosity study of polymers has been of continuing interest, mainly due to its fast measurement and importance in the characterization of the intermolecular interaction, as it describes the measure of the resistance to flow of a material, mixture, or solution. The other hand, MHS equations enable the important for determining molecular whose direct measurements otherwise exploitation of easiercomplicated. Mathematical could would be extremely hand,MHS equations enable themodeling exploitation of enable deepening experimental findings, allowing the simulation of parametric variation of the easier measurement of the viscosity. Mathematical modeling could enable deepening experimentalfindings, conditions and the of rheological models. Most conditions numerical experimental allowing theimprovement simulation of parametric variation of the experimental simulations tend to study alteration ofmodels

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call