Abstract

The enhancement of a dissolved chemical's Raman scattering by a liquid-core optical fiber (LCOF) geometry is absorption dependent. This dependence leads to a disruption of the usual linear correlation between chemical concentration and Raman peak area. To recover the linearity, we augmented a standard LCOF Raman spectroscopy system with spectrophotometric capabilities, permitting sequential measurements of Raman and absorption spectra within the LCOF. Measurements of samples with identical Raman-scatterer concentrations but different absorption coefficients are described. Using the absorption values, we reduced variations in the measured Raman intensities from 60% to less than 1%. This correction method should be important for LCOF-based Raman spectroscopy of sample sets with variable absorption coefficients, such as urine and blood serum from multiple patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.