Abstract
We describe the use of a Teflon-AF liquid core optical fiber (LCOF) geometry to enhance the collection of Raman scattering from the biochemical creatinine, dissolved in water and in urine. At short integration times, where shot noise is most troublesome, the enhanced signal leads to greater accuracy in estimating the creatinine concentration from the spectrum. At longer integration times, instabilities in the LCOF geometry manifest themselves, and the predictions are the same as or worse than those from standard cuvette-based spectral measurements. Photobleaching of fluorescence from urine is more extensive and more stable in the LCOF as well. Starting from the measured enhancement of a major creatinine Raman band, we calculate the expected ratio of prediction errors obtained using the two geometries, and it agrees closely with the observed ratio. These results indicate that Raman spectroscopy with these Teflon-AF LCOFs is stable enough for quantitative concentration predictions, accurate to a few percent of the concentration range spanned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.