Abstract

We present new higher-order quadratures for a family of boundary integral operators re-derived using the approach introduced in Kublik et al. (2013) [7]. In this formulation, a boundary integral over a smooth, closed hypersurface is transformed into an equivalent volume integral defined in a sufficiently thin tubular neighborhood of the surface. The volumetric formulation makes it possible to use the simple trapezoidal rule on uniform Cartesian grids and relieves the need to use parameterization for developing quadrature. Consequently, typical point singularities in a layer potential extend along the surface's normal lines. We propose new higher-order corrections to the trapezoidal rule on the grid nodes around the singularities. This correction is based on local decompositions of the singularity and is dependent on the angle of approach to the singularity relative to the surface's principal curvature directions. The proposed decomposition, combined with the volumetric formulation, leads to a special quadrature error cancellation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.