Abstract

A local numerical approach to cope with the singular and hypersingular boundary integral equations (BIEs) in non-regularized forms is presented in the paper for 2D elastostatics. The approach is based on the fact that the singular boundary integrals can be represented approximately by the mean values of two nearly singular boundary integrals and on the techniques of distance transformations developed primarily in previous work of the authors. The nearly singular approximations in the present work, including the normal and the tangential distance transformations, are designed for the numerical evaluation of boundary integrals with end-singularities at junctures between two elements, especially at corner points where sufficient continuity requirements are met. The approach is very general, which makes it possible to solve the hypersingular BIE numerically in a non-regularized form by using conforming C 0 quadratic boundary elements and standard Gaussian quadratures without paying special attention to the corner treatment. With the proposed approach, an infinite tension plate with an elliptical hole and a pressurized thick cylinder were analyzed by using both the formulations of conventional displacement and traction boundary element methods, showing encouragingly the efficiency and the reliability of the proposed approach. The behaviors of boundary integrals with end- and corner-singular kernels were observed and compared by the additional numerical tests. It is considered that the weakly singularities remain but should have been cancelled with each other if used in pairs by the corresponding terms in the neighboring elements, where the corner information is included naturally in the approximations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.