Abstract

To develop high-performance bimetallic catalysts, fine control over both the ligand and strain effects of secondary elements on the catalytic function of primary elements is crucial. Here we introduce an approach to produce Pd–Ag bimetallic core–shell nanocatalysts with synergistic regulation of the ligand and strain effects of Ag. Through precise core–shell engineering, (PdAg alloy core)@(ultrathin Pd shell) nanocrystals with controlled core compositions and shell thicknesses in addition to a well-defined octahedral morphology could be realized. The prepared octahedral PdAg@Pd core–shell nanocrystals exhibited pronounced catalytic performance toward hydrogen production from formic acid decomposition. The maximum catalytic activity was achieved with PdAg@Pd nanocrystals consisting of PdAg alloy cores with an average Pd/Ag atomic ratio of 3.5:1 and 1.1 atomic layer of Pd shells, which showed a record high turnover frequency of 21 500 h–1 at 50 °C. This catalytic function could be attributed to the optimize...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call