Abstract

The use of Au@Cu2O core@shell nanocrystals as sustainable catalysts for efficient hydrogen (H2) production from ammonia borane (AB) is demonstrated. By combining the attributes associated with core@shell structural features and electronic interactions, Au@Cu2O exhibited remarkable performance toward AB hydrolysis. The effect of shell thickness on H2 production performance was systematically investigated. Results showed that H2 production rate increased monotonically with shell thickness, while degree of dehydrogenation of AB was subject to optimization by shell thickness. A maximal 3.0 equivalents of H2 production can be achieved by Au@Cu2O with an optimal Cu2O shell thickness. The H2 produced from AB hydrolysis on Au@Cu2O was introduced to power a fuel cell for lightening light emitting diodes. The findings from the work not only enrich the family of metal/metal oxide composite catalysts for AB hydrolysis, but also deepen the fundamental understanding of implications of core@shell structural features and electronic interactions in dehydrogenation of AB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call