Abstract

BackgroundExcessive use of veterinary drugs causes severely environmental pollution and agricultural pollution, and poses great threat to human health. A simple method for the rapid, highly sensitive, and on-site monitoring of veterinary drug residues in complex samples remains lacking. ResultsIn this study, we propose a catalytically enhanced colorimetric lateral flow immunoassay (LFA) based on a novel core–satellite-structured magnetic nanozyme (Fe–Au@Pt) that can simultaneously and quantitatively detect three common veterinary drugs, namely, gentamicin (GM), streptomycin (STR), and clenbuterol (CLE), within a short testing time (<30 min). The Fe–Au@Pt nanozyme was simply prepared through the self-assembly of numerous Au@Pt nanoparticles on a large Fe3O4 core via electrostatic adhesion, which exhibited the advantages of high peroxidase-like activity, strong magnetic responsiveness, and multiple catalytic sites. Under the dual-signal amplification effect of magnetic enrichment and catalytic enhancement, the proposed nanozyme-LFA allowed the multiplex detection of STR, CLE, and GM with detection limits of 10.1, 6.3, and 1.1 pg/mL, respectively. SignificanceThe developed Fe–Au@Pt–LFA achieves direct, simultaneous, and accurate detection of three target drugs in food samples (honey, milk, and pork). The proposed assay shows great potential for application in the real-time monitoring of small-molecule pollutants in complex environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.