Abstract

We present the design of parallel architectures for the computation of the Hough transform based on application-specific CORDIC processors. The design of the circular CORDIC in rotation mode is simplified by the a priori knowledge of the angles participating in the transform and a high throughput is obtained through a pipelined design combined with the use of redundant arithmetic (carry save adders in this paper). Saving area is essential to the design of a pipelined CORDIC and can be achieved through the reduction in the number of microrotations and/or the size of the coefficient ROM. To reduce the number of microrotations we incorporate radix 4, when it is possible, or mixed radix (radix 2 and radix 4) in the design of the processor, achieving a reduction by half and 25% microrotations, respectively, with respect to a totally radix 2 implementation. Furthermore, if we allocate two circular CORDIC rotators into one processors then the size of the shared coefficient ROM is only 50% of the ROM of a design based on two separated rotators. Finally, we have also incorporated additional microrotations in order to reduce the scale factor to one. The result is a pipelined architecture which can be easily integrated in VLSI technology due to its regularity and modularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.