Abstract
Due to the divers biological applications of Cu(II) complexes, we in this study reports the various Cu(II) complexes. The study aims to synthesize and assess new Cu(II) complexes as powerful β-glucuronidase inhibitors. Five Schiff base ligands and their complexes were synthesized, characterized, and screened against β-glucuronidase inhibitory activity. In the series, compounds 3e, 3c, 2b, and 2c ascribed powerful inhibition ranging from (IC50 = 3.0 ± 0.7 µM) to (IC50 = 19.2 ± 0.8 µM). A precise and particular arrangement of atoms is suggested by the triclinic p-1 space group and the existence of a single molecule in an asymmetric unit, which are indispensable for the reactivity as well as the stability of the compounds. The analysis of the Hirshfeld surface provides information about the hydrogen intermolecular and π-π interactions. Based on molecular docking, binding potency increasing by complexation 3a-e compared to ligands 2a-e as well as reference Saccharic acid and uronic isofagomine inhibitor, suggesting that it may be a potent inhibitor of these receptors. The work recognizes latent active compounds for novel β-glucoronidase inhibitors, by further support these may be harnessed for the development of potent drugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have