Abstract
The precipitation and dissolution of copper impurities at oxygen precipitates and stacking faults in silicon were studied using thermal budgets commensurate with standard integrated circuit processing. Additionally, in order to develop a better understanding of the dissolution process, we have obtained results on the chemical state of the copper precipitates. The goal of this work was to determine the feasibility of removing and maintaining copper impurities away from the active device region of an integrated circuit device by use of oxygen precipitates and stacking faults in the bulk of the material. Based on our results, we provide a basis for a predictive understanding of copper precipitation and dissolution in silicon and we discuss the feasibility of copper impurity control in silicon integrated circuit devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have