Abstract
Pyrroloindolines bearing a C3-N linkage comprise the core of many biologically active natural products, but many methods toward their synthesis are limited by the sterics or electronics of the product. We report a single electron-based approach for the synthesis of this scaffold and demonstrate high-yielding aminations, regardless of electronic or steric demands. The transformation uses copper wire and isopropanol to promote the reaction. The broad synthetic utility of this heterogeneous copper-catalyzed approach to access pyrroloindolines, diketopiperazine, furoindoline, and (+)-asperazine is included, along with experiments to provide insight into the mechanism of this new process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have