Abstract

AbstractAtmospheric CO2 and H2O adsorbed on the photocatalyst surface undergo sunlight‐assisted conversion to solar products that bridge the gaps between artificial and natural photosynthesis. Herein, we report a Lewis acid‐base interaction derived photocatalyst, Cu deposited on reduced titania, that harvests CO2 and H2O from the air and transforms them to CH4. Photocatalyst surface studies confirm that coordinately unsaturated Cu atoms and oxygen vacancies are formed that facilitate CO2 and H2O adsorption. The mechanistic studies, combined with tandem secondary ion mass spectroscopy and isotopic labelling, confirm the CH4 origin from atmosphere‐adsorbed CO2 and H2O. The contributing factors to photocatalyst instability are explored. We expect that this study will have an impact on the widespread application and economic viability of photocatalytic CO2 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.