Abstract

AbstractThis paper describes the synthesis and characterization of N‐(4‐carboxyphenyl) itaconamic acid (CPA) and N‐(4‐carboxyphenyl) itaconimide (CPI) obtained by reacting itaconic anhydride with p‐aminobenzoic acid. Structural and thermal characterization of CPA and CPI was done using 1H‐NMR, FTIR, and differential scanning calorimetry (DSC). Copolymerization of CPA or CPI with methyl methacrylate (MMA) in solution was carried out at 60 °C using azobisisobutyronitrile as an initiator and dimethyl acetamide or THF as solvent. Feed compositions having varying mole fractions of CPA or CPI ranging from 0.05–0.20 or 0.1–0.5 were taken to prepare copolymers. Copolymerizations were terminated at low percentage conversion. Structural characterization of copolymers was done by 1H‐NMR and elemental analysis. Copolymer composition was determined using percentage nitrogen content. The reactivity ratios were r1 (MMA) = 0.68 ± 0.06 and r2 (CPI) = 0.46 ± 0.06. The intrinsic viscosity [η] was determined using an Ubbelohde suspension level viscometer. [η] decreased with increasing mole fraction of N‐(p‐carboxyphenyl) itaconimide or N‐(p‐carboxyphenyl) itaconamic acid in copolymers. Glass transition temperature and thermal stability of the copolymers were determined using DSC and thermogravimetric analysis, respectively. The glass transition temperature (Tg) as determined from DSC scans increased with increasing amounts of CPA or CPI in copolymers. A significant improvement in the char yield was observed upon copolymerization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1909–1915, 2005

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call