Abstract

AbstractThe article describes the synthesis and characterization of N‐aryl itaconimide monomers such as: N‐(p‐chlorophenyl) itaconimide (PI)/N‐(m‐chlorophenyl) itaconimide (MI)/N‐(o‐chlorophenyl) itaconimide (OI) and its copolymerization behavior with MMA. The homopolymers and copolymers of N‐aryl itaconimides and methyl methacrylate (MMA, M2) were synthesized by varying the mol fraction of N‐aryl itaconimides in the initial feed from 0.1 to 0.5 using azobisisobutyronitrile (AIBN) as an initiator and tetrahydrofuran (THF) as the solvent. Copolymer composition was determined using 1H‐NMR spectroscopy [by taking the ratio of intensities of signals due to OCH3 of MMA (δ = 3.59 ppm) and the aromatic proton (δ = 7.2–7.5 ppm) of N‐aryl itaconimides] and percent nitrogen content. The reactivity ratios were found to be r1 = 1.33 and r2 = 0.36 (PI‐MMA) r1 = 1.15 and r2 = 0.32 (MI‐MMA) and r1 = 0.81 and r2 = 0.35 (OI‐MMA). Molecular weight as determined using high‐performance liquid chromatography decreased with increasing mol fraction of itaconimides in copolymers. All the polymers had a polydisperstivity index in the range of 1.5–2.6.Thermal characterization was done using differential scanning calorimetry and dynamic thermogravimetry in nitrogen atmosphere. Incorporation of these N‐aryl itaconimides in PMMA backbone resulted in an improvement in glass transition temperature (Tg) and thermal stability. Percent char increased with the increase of PI/MI/OI content in the copolymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2078–2086, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.