Abstract

This paper investigates the coordinated trajectory tracking problem of multiple vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs). The case of unidirectional information flow is considered and the objective is to drive all the follower VTOL UAVs to accurately track a desired trajectory associated with a leader. Firstly, a novel distributed estimator is developed for each VTOL UAV to obtain the leader’s desired information asymptotically. With the outputs of the estimators, the solution to the coordinated trajectory tracking problem of multiple VTOL UAVs is transformed to individually solving the tracking problem of each VTOL UAV. Due to the under-actuated nature of the VTOL UAV, a hierarchical framework is introduced for each VTOL UAV such that a command force and an applied torque are exploited in sequence, then the position tracking to the estimated desired position and the attitude tracking to the command attitude are achieved. Moreover, an auxiliary system with proper parameters is implemented to guarantee the singularity-free command attitude extraction and to obviate the use of the unavailable desired information. The stability analysis and simulations effectively validate the achievement of the coordinated trajectory tracking of multiple VTOL UAVs with the proposed control approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call