Abstract

This paper proposes a distributed formation control approach for a team of vertical takeoff and landing (VTOL) unmanned aerial vehicles (UAVs) subject to switching topologies. The communication topology among UAVs is allowed to be with weak connectivity, in the sense of satisfying a uniformly jointly connected assumption. Since VTOL UAV systems are typically underactuated, a hierarchical framework is introduced such that a distributed control scheme can be established using neighboring positions and velocities. In particular, a distributed command force is developed to fulfill the formation objective, and an applied torque is synthesized for the attitude to track the command attitude. This command attitude is extracted from the command force by using a backstepping idea. In addition, an auxiliary system with appropriate parameters is introduced to preserve thrust saturation constraint, to guarantee nonsingular command attitude extraction and to avoid usage of neighboring acceleration information. With proper choices of Lyapunov functions, explicit selection criteria for the control parameters are formulated to ensure the asymptotic stability of the closed-loop system. Simulations and experiments are provided to validate the proposed theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.