Abstract
A coordinated fast primary frequency control scheme from offshore wind power plants (OWPPs) integrated to a three terminal high voltage DC (HVDC) system is proposed in this study. The impact of wind speed variation on the OWPP active power output and thus on the AC grid frequency and DC grid voltage is analysed. The removal of active power support from OWPP after the frequency control action may result in second frequency (and DC voltage) dips. Three different methods to mitigate these secondary effects are proposed, such as, (i) Varying the droop gains of the HVDC converter (ii) Releasing the active power support from OWPP with a ramp rate limiter and (iii) An alternative method for the wind turbine overloading considering rotor speed. The effectiveness of the proposed control scheme is demonstrated on a wind power plant integrated into a three terminal HVDC system developed in DIgSILIENT PowerFactory. The results show that the proposed coordinated frequency control method performs effectively at different wind speeds and minimises the secondary effects on frequency and DC voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.