Abstract
Simultaneous co-activation of neocortical neurons islikely critical for brain computations ranging from perception and motor control to memory and cognition. While co-activation of excitatory principal cells (PCs) during ongoing activity has been extensively studied, that of inhibitory interneurons (INs) has received little attention. Here, we show invivo and invitro that members of two non-overlapping neocortical IN populations, expressing somatostatin (SOM) or vasoactive intestinal peptide (VIP), are active as populations rather than individually. We demonstrate a variety of synergistic mechanisms, involving population-specific local excitation, GABAergic disinhibition and excitation through electrical coupling, which likely underlie IN population co-activity. Firing of a few SOM or VIP INs recruits additional members within the cell type via GABAergic and cholinergic mechanisms, thereby amplifying the output of the population as awhole. Our data suggest that IN populations work as cooperative units, thus generating an amplifying nonlinearity in their circuit output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.