Abstract

This study describes a cooperative chassis control system that controls longitudinal motion in accordance with the yaw movement for electric vehicles. This system can be used to improve vehicle agility and stability using the integration of torque distribution unit and electronic stability control (ESC). Moreover, this system can assist drivers smoothly navigate through a curve before ESC intervention. The structure of the proposed control system is fundamentally a model following controller, thereby making the vehicle follow the desired instantaneous handling characteristics by regulating the feedforward of the cornering stiffness, state feedback of longitudinal acceleration, and front and rear drive ratios. Experiments are performed to demonstrate the effectiveness of the proposed control system. The maximum steering angle during cornering is confirmed to be significantly reduced with proper deceleration/acceleration control and adjustment of the drive torques of the front and rear axles. Moreover, trajectory tracking can be significantly improved. The proposed control strategy can be used to assist intelligent vehicles to plan a reasonable trajectory, thereby enabling these vehicles to safely and rapidly pass corners or avoid obstacles while ensuring safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.