Abstract

An evolutionary snowdrift game (SG) that incorporates bounded rationality and limited information in the evolutionary process is proposed and studied. Based on SG in a well-mixed population and defining the winning action at a turn to be the one that gets a higher payoff, the most recent m winning actions can be used as a public information based on which the competing agents decide their next actions. This defines a strategy pool from which each agent picks a number of strategies as their tool in adapting to the competing environment. The payoff parameter r in SG serves to set the maximum number of winners per turn. Due to the bounded rationality and limited information, the cooperative frequency shows steps and plateaux as a function of r and these features tend to be smoothed out as m increases. These features are results of an interplay between a restricted subset of m -bit histories that the system can visit at a value of r and the limited capacity that agents can adapt. The standard deviation in the number of agents taking the cooperative action is also studied. For general values of r , our model generates a realization of the binary-agent-resource model. The idea of introducing bounded rationality into a two-person game to realize the minority game or binary-agent-resource model could be a useful tool for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call